Rivet
Release 0.1.0b

StunxFS

Jan 18, 2023

CONTENTS

1 Contents 3
L1 OVEIVIEW . . . o ot e e e e e e e e e e e e e e 3
1.2 Runthecompiler e e e e e e e 3
1.3 HelloWorld! e e e e e 3
1.4 Editor/IDE sSUpport o o e e e e e e e e e e e e e e e e 4
1.5 Code Structure o i i e e e e e e e e e 4
1.6 Functions e e e 5
L7 Statements e e e e e e e e e e e e e e e e 6

Rivet, Release 0.1.0b

A general-purpose programming language, focused on simplicity, safety and stability.

Rivet’s goal is to be a very powerful programming language and at the same time easy to use, with a syntax inspired
mainly by Zig, Rust and C# (which are the coolest languages I’ve ever seen), and by other languages such as Python,
Lua, TypeScript, D, Go, etc.

Check out the Overview section for further information, including how to build the project.

Note: This project is under active development.

CONTENTS 1

Rivet, Release 0.1.0b

2 CONTENTS

CHAPTER
ONE

CONTENTS

1.1 Overview

Rivet is a general purpose programming language designed for the development of stable and safe software.

Rivet uses the C programming language as its main backend.

Note: Before continuing, I assume you know how to use a console, otherwise you can read this tutorial: The Linux
command line for beginners.

1.2 Run the compiler

1.2.1 Dependencies

* The compiler requires Python 3.

¢ The Rivet compiler currently generates C code, so a C compiler, which supports C11,
is required to generate executables. Over time the compiler will add support for generating binaries directly
without the need for a C compiler.

The compiler has been tested on linux and windows.
Just execute python3 rivetc some_file.ri.
You can see all available compiler options by using the -h/--help flag.

python3 rivetc -h

1.3 Hello World!

Let’s start with the typical Hello World!:

We create a file called hello_world.ri with the following content:

import "std/console";

fn main() {
console.println("Hello World!");
}

https://ubuntu.com/tutorials/command-line-for-beginners#1-overview
https://ubuntu.com/tutorials/command-line-for-beginners#1-overview

Rivet, Release 0.1.0b

Then we compile that file:

$ python3 rivetc hello_world.ri

We’ll get an executable called hello_world as output, so we run it:

$./hello_world

We should see this output:

Hello World!

Excellent! You have compiled your first program in Rivet!

1.4 Editor/IDE support

* LiteXL (Syntax-highlighting only).

1.5 Code Structure

1.5.1 Comments

// This is a single line comment.
/:’:
This is a multiline comment.

:':/

You can use comments to make reminders, notes, or similar things in your code.

1.5.2 Entry point

In Rivet, the entry point of a program is a function named main.

func main() {
// code goes here
}

1.5.3 Top-level declarations

On the top level only declarations are allowed.

import "module" { import_list, ... };
const Foo: int32 = 0;
let Foo: int32 = 0;

type Foo = int32;

(continues on next page)

Chapter 1. Contents

https://github.com/lite-xl/lite-xl-plugins/blob/master/plugins/language_rivet.lua

Rivet, Release 0.1.0b

(continued from previous page)

trait Foo { /* ... */ }
struct Foo { /* ... */ }
enum Foo { /* ... */ }

extend Foo { /* ... */ }
func fooO { /* ... */ }
test "Foo" { /* ... */ }

1.6 Functions

Functions contain a series of arguments, a return type, and a body with multiple statements.

The way to declare functions in Rivet is as follows:

func <name>(<args>) [return_type] {

}

For example:

func add(a: i32, b: i32) i32 {
return a + b;

}

add returns the result of adding the arguments a and b.

Functions can have 0 arguments.

// f1° returns a simple numeric value of type "i32.
func f10O i32 {
return 0;

}

// "f2° takes an argument of type ‘132" and prints it to the console.
func f2(a: i32) {

println("a: {}", a);
}

// “f3° takes no arguments and returns void.
func 30 { }

A function body is made up of 1 or more statements and can be empty.

func xQ {
/* empty body */
}

(continues on next page)

1.6. Functions 5

Rivet, Release 0.1.0b

(continued from previous page)

func yO {
let my_var = 1; // statement

}

1.6.1 Arguments

The arguments are declared as follows: <name>: <type> [= default_value], forexample: argl: 1i32,arg2:
bool = false.

The arguments are immutable.

They can also have default values, this bypasses the need to pass the argument each time the function is called: argl:
i32 = 5.

So, if we have a function called £5 with a default value argument, we can call it in 3 ways:

func f5(argl: i32 = 5) {
println("argl: {}", argl);
}

50 ; // use the default value 5
£5(100); // will print 100 instead of 5 to the console

// this uses a feature called ‘named argument’, which allows an optional
// argument to be given a value by its name in any order
f5Cargl: 500); // will print 500 instead of 5 to the console

1.7 Statements
Each statement must end with a semicolon.

1.7.1 Variables

Variables are like boxes that contain values.

Variables are declared as follows: [mut] <name>[: <type>] = <value>;. Example:

x: 132 := 1;

We have created a variable called x, which contains the value 1 and is of type i32.

The type of the variable can be omitted.

x :=1; // via inference, the compiler knows that ‘x° is an "i32".

By default, all variables are immutable, that is, their values do not change. To change the value of a variable you have
to declare it with mut.

mut x := 1;
X = 2; // this is valid

(continues on next page)

6 Chapter 1. Contents

Rivet, Release 0.1.0b

(continued from previous page)

y =13
y = 2; // error: 'y is immutable

Multiple values can be assigned on a single line via tuple-destructuring, example:

(a, b, o) := (1, 2, 3);
(c: i32, d: 132, e: i32) := (4, 5, 6);
(f, g, h) := tuple_fn(Q;

// this is a short form for:

a := 1;
b := 2;
c = 3;
c: 132 := 4;
d: i32 := 5;
e: i32 := 6;

tmp_tuple_£fn := tuple_fn(Q);
f := tmp_tuple_fn.0;
g := tmp_tuple_fn.1;
h := tmp_tuple_fn.2;

1.7. Statements 7

	Contents
	Overview
	Run the compiler
	Dependencies

	Hello World!
	Editor/IDE support
	Code Structure
	Comments
	Entry point
	Top-level declarations

	Functions
	Arguments

	Statements
	Variables

